A 1-tough nonhamiltonian maximal planar graph

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An update on non-Hamiltonian 54-tough maximal planar graphs

Studying the shortness of longest cycles in maximal planar graphs, we improve the upper bound on the shortness exponent of the class of 54 -tough maximal planar graphs presented by Harant and Owens [Discrete Math. 147 (1995), 301–305]. In addition, we present two generalizations of a similar result of Tkáč who considered 1-tough maximal planar graphs [Discrete Math. 154 (1996), 321–328]; we rem...

متن کامل

vertex centered crossing number for maximal planar graph

the crossing number of a graph  is the minimum number of edge crossings over all possible drawings of  in a plane. the crossing number is an important measure of the non-planarity of a graph, with applications in discrete and computational geometry and vlsi circuit design. in this paper we introduce vertex centered crossing number and study the same for maximal planar graph.

متن کامل

Characterizing degree-sum maximal nonhamiltonian bipartite graphs

In 1963, Moon and Moser gave a bipartite analogue to Ore’s famed theorem on hamiltonian graphs. While the sharpness examples of Ore’s Theorem have been independently characterized in at least four different papers, no similar characterization exists for the Moon-Moser Theorem. In this note, we give such a characterization, consisting of one infinite family and two exceptional graphs of order ei...

متن کامل

Nonhamiltonian 3-Connected Cubic Planar Graphs

We establish that every cyclically 4-connected cubic planar graph of order at most 40 is hamiltonian. Furthermore, this bound is determined to be sharp and we present all nonhamiltonian such graphs of order 42. In addition we list all nonhamiltonian cyclically 5-connected cubic planar graphs of order at most 52 and all nonhamiltonian 3-connected cubic planar graphs of girth 5 on at most 46 vert...

متن کامل

A Note on Maximal Nonhamiltonian Burkard–Hammer Graphs

A graph G = (V, E) is called a split graph if there exists a partition V = I∪K such that the subgraphs G[I] andG[K] of G induced by I andK are empty and complete graphs, respectively. In 1980, Burkard and Hammer gave a necessary condition for a split graph G with |I| < |K| to be hamiltonian. We will call a split graph G with |I| < |K| satisfying this condition a Burkard–Hammer graph. Further, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1980

ISSN: 0012-365X

DOI: 10.1016/0012-365x(80)90240-x